Permutations and Combinations Questions

FACTS  AND  FORMULAE  FOR  PERMUTATIONS  AND  COMBINATIONS  QUESTIONS

 

 

1.  Factorial Notation: Let n be a positive integer. Then, factorial n, denoted n! is defined as: n!=n(n - 1)(n - 2) ... 3.2.1.

Examples : We define 0! = 1.

4! = (4 x 3 x 2 x 1) = 24.

5! = (5 x 4 x 3 x 2 x 1) = 120.

 

2.  Permutations: The different arrangements of a given number of things by taking some or all at a time, are called permutations.

Ex1 : All permutations (or arrangements) made with the letters a, b, c by taking two at a time are (ab, ba, ac, ca, bc, cb).

Ex2 : All permutations made with the letters a, b, c taking all at a time are:( abc, acb, bac, bca, cab, cba)

Number of Permutations: Number of all permutations of n things, taken r at a time, is given by:

Prn=nn-1n-2....n-r+1=n!n-r!

 

Ex : (i) P26=6×5=30   (ii) P37=7×6×5=210

Cor. number of all permutations of n things, taken all at a time = n!.

Important Result: If there are n subjects of which p1 are alike of one kind; p2 are alike of another kind; p3 are alike of third kind and so on and pr are alike of rth kind,

such that p1+p2+...+pr=n

Then, number of permutations of these n objects is :

n!(p1!)×(p2! ).... (pr!)

 

3.  Combinations: Each of the different groups or selections which can be formed by taking some or all of a number of objects is called a combination.

Ex.1 : Suppose we want to select two out of three boys A, B, C. Then, possible selections are AB, BC and CA.

Note that AB and BA represent the same selection.

Ex.2 : All the combinations formed by a, b, c taking ab, bc, ca.

Ex.3 : The only combination that can be formed of three letters a, b, c taken all at a time is abc.

Ex.4 : Various groups of 2 out of four persons A, B, C, D are : AB, AC, AD, BC, BD, CD.

Ex.5 : Note that ab ba are two different permutations but they represent the same combination.

Number of Combinations: The number of all combinations of n things, taken r at a time is:

Crn=n!(r !)(n-r)!=nn-1n-2....to r factorsr!

 

Note : (i)Cnn=1 and C0n =1     (ii)Crn=C(n-r)n

 

Examples : (i) C411=11×10×9×84×3×2×1=330      (ii)C1316=C(16-13)16=C316=560

Q:

A group consists of 4 couples in which each of the 4 boys have one girl friend.In how many ways they can be arranged in a straight line such that boys and girls occupies alternate positions?

Answer

Answer : 1152


 


Total positions are 8.


In that boys can be arranged in 4 places and girls can be arranged in 4 places and hence this can be done in 2 ways.


i.e => 4! x 4! x 2 = 24 x 24 x 2=1152.

Report Error

View answer Workspace Report Error Discuss

Subject: Permutations and Combinations Exam Prep: CAT
Job Role: Bank PO

10 2588
Q:

In how many different ways the letters of the word 'TRANSFORMER' can be arranged such that 'N' and 'S' always come together?

A) 112420 B) 85120
C) 40320 D) 1209600
 
Answer & Explanation Answer: D) 1209600

Explanation:

Given word is TRANSFORMER.

Number of letters in the given word = 11 (3 R's)

 

Required, number of ways the letters of the word 'TRANSFORMER' can be arranged such that 'N' and 'S' always come together is

10! x 2!/3!

= 3628800 x 2/6

= 1209600

Report Error

View Answer Report Error Discuss

7 2475
Q:

How many such pair of letters are there in the word ‘TROUBLED’ which have as many letters between them in the word as they have between them in the English alphabet?

A) 2 B) 3
C) 4 D) 5
 
Answer & Explanation Answer: A) 2

Explanation:

Hence there are two pairs

Report Error

View Answer Report Error Discuss

13 2365
Q:

How many numbers of five digits can be formed by using the digits 1, 0, 2, 3, 5, 6 which are between 50000 and 60000 without repeating the digits?

A) 120 B) 240
C) 256 D) 360
 
Answer & Explanation Answer: A) 120

Explanation:

Required number of 5 digit numbers can be formed by using the digits 1, 0, 2, 3, 5, 6 which are between 50000 and 60000 without repeating the digits are 

5 x 4 x 3 x 2 x 1 = 120.

Report Error

View Answer Report Error Discuss

Filed Under: Permutations and Combinations
Exam Prep: AIEEE , Bank Exams , CAT , GATE
Job Role: Analyst , Bank Clerk , Bank PO

8 2341
Q:

In how many different ways could couples be picked from 6 men and 9 women ?

A) 26 B) 54
C) 52 D) 28
 
Answer & Explanation Answer: B) 54

Explanation:

Number of mens = 8

Number of womens = 5

 

Different ways could couples be picked = C16×9C1 = 9 x 6 = 54 ways.

Report Error

View Answer Report Error Discuss

Filed Under: Permutations and Combinations
Exam Prep: GATE , CAT , Bank Exams , AIEEE
Job Role: Bank PO , Bank Clerk

5 2319
Q:

If it is possible to make a meaningful word with the first, the seventh, the ninth and the tenth letters of the word RECREATIONAL, using each letter only once, which of the following will be the third letter of the word? If more than one such word can be formed, give ‘X’ as the answer. If no such word can be formed, give ‘Z’ as the answer.

A) T B) X
C) N D) R
 
Answer & Explanation Answer: D) R

Explanation:

The first, the seventh, the ninth and the tenth letters of the word RECREATIONAL are R, T, O and N respectively. Meaningful word from these letters is only TORN. The third letter of the word is ‘R’.

Report Error

View Answer Report Error Discuss

6 2273
Q:

In how many different ways can the letters of the word 'RITUAL' be arranged?

A) 720 B) 5040
C) 360 D) 180
 
Answer & Explanation Answer: A) 720

Explanation:

The number of letters in the given word RITUAL = 6

Then, 

Required number of different ways can the letters of the word 'RITUAL' be arranged = 6!

=> 6 x 5 x 4 x 3 x 2 x 1 = 720

Report Error

View Answer Report Error Discuss

Filed Under: Permutations and Combinations
Exam Prep: AIEEE , Bank Exams , CAT , GATE
Job Role: Analyst , Bank Clerk , Bank PO

11 2110
Q:

If each of the vowels in the word 'MEAT' is kept unchanged and each of the consonants is replaced by the previous letter in the English alphabet, how many four-lettered meaningful words can be formed with the new letters, using each letter only once in each word?

A) 3 B) 4
C) 1 D) 2
 
Answer & Explanation Answer: A) 3

Explanation:
Report Error

View Answer Report Error Discuss

Filed Under: Permutations and Combinations
Exam Prep: Bank Exams

19 2099