Permutations and Combinations Questions

FACTS  AND  FORMULAE  FOR  PERMUTATIONS  AND  COMBINATIONS  QUESTIONS

 

 

1.  Factorial Notation: Let n be a positive integer. Then, factorial n, denoted n! is defined as: n!=n(n - 1)(n - 2) ... 3.2.1.

Examples : We define 0! = 1.

4! = (4 x 3 x 2 x 1) = 24.

5! = (5 x 4 x 3 x 2 x 1) = 120.

 

2.  Permutations: The different arrangements of a given number of things by taking some or all at a time, are called permutations.

Ex1 : All permutations (or arrangements) made with the letters a, b, c by taking two at a time are (ab, ba, ac, ca, bc, cb).

Ex2 : All permutations made with the letters a, b, c taking all at a time are:( abc, acb, bac, bca, cab, cba)

Number of Permutations: Number of all permutations of n things, taken r at a time, is given by:

Prn=nn-1n-2....n-r+1=n!n-r!

 

Ex : (i) P26=6×5=30   (ii) P37=7×6×5=210

Cor. number of all permutations of n things, taken all at a time = n!.

Important Result: If there are n subjects of which p1 are alike of one kind; p2 are alike of another kind; p3 are alike of third kind and so on and pr are alike of rth kind,

such that p1+p2+...+pr=n

Then, number of permutations of these n objects is :

n!(p1!)×(p2! ).... (pr!)

 

3.  Combinations: Each of the different groups or selections which can be formed by taking some or all of a number of objects is called a combination.

Ex.1 : Suppose we want to select two out of three boys A, B, C. Then, possible selections are AB, BC and CA.

Note that AB and BA represent the same selection.

Ex.2 : All the combinations formed by a, b, c taking ab, bc, ca.

Ex.3 : The only combination that can be formed of three letters a, b, c taken all at a time is abc.

Ex.4 : Various groups of 2 out of four persons A, B, C, D are : AB, AC, AD, BC, BD, CD.

Ex.5 : Note that ab ba are two different permutations but they represent the same combination.

Number of Combinations: The number of all combinations of n things, taken r at a time is:

Crn=n!(r !)(n-r)!=nn-1n-2....to r factorsr!

 

Note : (i)Cnn=1 and C0n =1     (ii)Crn=C(n-r)n

 

Examples : (i) C411=11×10×9×84×3×2×1=330      (ii)C1316=C(16-13)16=C316=560

Q:

Find the total number of distinct vehicle numbers that can be formed using two letters followed by two numbers. Letters need to be distinct

A) 65000 B) 64000
C) 72000 D) 36000
 
Answer & Explanation Answer: A) 65000

Explanation:

Out of 26 alphabets two distinct letters can be chosen in 26P2 ways. Coming to numbers part, there are 10 ways.(any number from 0 to 9 can be chosen) to choose the first digit and similarly another 10ways to choose the second digit. Hence there are totally 10X10 = 100 ways. 

 

Combined with letters there are 6P2 X 100 ways = 65000 ways to choose vehicle numbers.

Report Error

View Answer Report Error Discuss

3 8708
Q:

If you have 6 New Year greeting cards and you want to send them to 4 of your friends, in how many ways can this be done?

A) 720 B) 360
C) 240 D) 740
 
Answer & Explanation Answer: B) 360

Explanation:

We have to find number of permutations of 4 objects out of 6 objects.

 

This number is 6P4= 360

 

Therefore, cards can be sent in 360 ways.

Report Error

View Answer Report Error Discuss

8 8691
Q:

There are five cards lying on the table in one row. Five numbers from among 1 to 100 have to be written on them, one number per card, such that the difference between the numbers on any two adjacent cards is not divisible by 4. The remainder when each of the 5 numbers is divided by 4 is written down on another card (the 6th card) in order. How many sequences can be written down on the 6th card ?

A) 4 x 3^4 B) 3^4
C) 4^3 D) 3 x 4^3
 
Answer & Explanation Answer: A) 4 x 3^4

Explanation:

The remainder on the first card can be 0,1,2 or 3 i.e 4 possibilities.
The remainder of the number on the next card when divided by 4 can have 3 possible values (except the one occurred earlier).

For each value on the card the remainder can have 3 possible values.

The total number of possible sequences is: 4*3^4

Report Error

View Answer Report Error Discuss

3 8500
Q:

A box contains 4 different black balls, 3 different red balls and 5 different blue balls. In how many ways can the balls be selected if every selection must have at least 1 black ball and one red ball ?

A) 24 - 1  

B) 2425-1   

C) (24-1)(23-1)25   

D) None 

A) A B) B
C) C D) D
 
Answer & Explanation Answer: C) C

Explanation:

It is explicitly given that all the 4 black balls are different, all the 3 red balls are different and all the 5 blue balls are different. Hence this is a case where all are distinct objects.

 

Initially let's find out the number of ways in which we can select the black balls. Note that at least 1 black ball must be included in each selection.

 

Hence, we can select 1 black ball from 4 black balls
or 2 black balls from 4 black balls.
or 3 black balls from 4 black balls.
or 4 black balls from 4 black balls.

 

Hence, number of ways in which we can select the black balls

 

= 4C1 + 4C2 + 4C3 + 4C4
= 24-1 ........(A)

 

Now let's find out the number of ways in which we can select the red balls. Note that at least 1 red ball must be included in each selection.

 

Hence, we can select 1 red ball from 3 red balls
or 2 red balls from 3 red balls
or 3 red balls from 3 red balls

 

Hence, number of ways in which we can select the red balls
= 3C1 + 3C2 + 3C3
=23-1........(B)

 

Hence, we can select 0 blue ball from 5 blue balls (i.e, do not select any blue ball. In this case, only black and red balls will be there)
or 1 blue ball from 5 blue balls
or 2 blue balls from 5 blue balls
or 3 blue balls from 5 blue balls
or 4 blue balls from 5 blue balls
or 5 blue balls from 5 blue balls.

 

Hence, number of ways in which we can select the blue balls
= 5C0 + 5C1 + 5C2 + … + 5C5
= 25..............(C)

 

From (A), (B) and (C), required number of ways
=  2524-123-1

Report Error

View Answer Report Error Discuss

Filed Under: Permutations and Combinations
Exam Prep: GATE , CAT , Bank Exams , AIEEE
Job Role: Bank PO , Bank Clerk

3 8495
Q:

A tea expert claims that he can easily find out whether milk or tea leaves were added first to water just by tasting the cup of tea. In order to check this claims 10 cups of tea are prepared, 5 in one way and 5 in other. Find the different possible ways of presenting these 10 cups to the expert.

A) 340 B) 210
C) 290 D) 252
 
Answer & Explanation Answer: D) 252

Explanation:

Since there are 5 cups of each kind,prepared with milk or tea leaves added first,are identical hence,total number of different people ways of presenting the cups to the expert is 10!/(5! x 5!)= 252

Report Error

View Answer Report Error Discuss

4 8371
Q:

Find the number of ways in which 21 balls can be distributed among 3 persons such that each person does not receive less than 5 balls.

A) 28 B) 14
C) 21 D) 7
 
Answer & Explanation Answer: A) 28

Explanation:

Let x, y, z be the number of balls received by the three persons, then

  

x5, y5, z5 and x+y+z=21

 

Let u0, v0, w0 then

 

 x + y + z =21

 

 u + 5 + v + 5 + w + 5 = 21

 

 u + v + w = 6 

 

Total number of solutions = C3-16+3-1=C28=28

Report Error

View Answer Report Error Discuss

18 8039
Q:

In how many ways can you choose one or more of 12 different candies?

A) 4054 B) 4050
C) 4095 D) 4059
 
Answer & Explanation Answer: C) 4095

Explanation:

Each candy can be dealt with in two ways.It can be chosen or not chosen.This will give 2 possibilites for the first candy, 2 for the second, and so on.by multiplying the cases together we get 212. Since the case of no candy being selected is not an option, we have to subtract 1 from our answer.

 

Therefore,there are 212- 1 = 4095 ways of selecting one or more candies

Report Error

View Answer Report Error Discuss

0 7928
Q:

How many 3-digit numbers can be formed from the digits 2, 3, 5, 6, 7 and 9 which are divisible by 5 and none of the digits is repeated ?

A) 15 B) 20
C) 5 D) 10
 
Answer & Explanation Answer: B) 20

Explanation:

Since each number to be divisible by 5, we must have 5 0r 0 at the units place. But in given digits we have only 5.

 

So, there is one way of doing it.

 

Tens place can be filled by any of the remaining 5 numbers.So, there are 5 ways of filling the tens place.

 

The hundreds place can now be filled by any of the remaining 4 digits. So, there are 4 ways of filling it.

 

Required number of numbers = (1 x 5 x 4) = 20.

Report Error

View Answer Report Error Discuss

12 7923