FACTS  AND  FORMULAE  FOR  LOGARITHMS  QUESTIONS

 

 

EXPONENTIAL FUNCTION

 For every 

xR, ex=1+x+x22!+x33!+...+xnn!+... 

or  ex=n=0xnn!

Here ex is called as exponential function and it is a finite number for every xR.

 

 

LOGARITHM

Let a,b be positive real numbers then ax=b can be written as 

     logab=x;  a1, a>0, b>0

e.g, 25=32 log232=5

 

(i) Natural Logarithm :  

logeN is called Natural logarithm or Naperian Logarithm, denoted by ln N i.e, when the base is 'e' then it is called as Natural logarithm.

e.g , loge5, loge181 ... etc

 

(ii) Common Logarithm :  is called common logarithm or Brigg's Logarithm i.e., when base of log is 10, then it is called as common logarithm.

e.g log10100, log10248, etc

 

PROPERTIES OF LOGARITHM

1. logaxy=logax+logay

 

 2. logaxy=logax-logay

 

3. logxx=1

 

4. loga1=0

 

5. logaxp=plogax

 

6. logax=1logxa

 

7. logax=logbxlogba=logxloga

 

CHARACTERISTICS AND MANTISSA


Characteristic : The integral part of logarithm is known as characteristic.

Mantissa : The decimal part is known as mantissa and is always positive.

E.g, In logax, the integral part of x is called the characteristic and the decimal part of x is called the mantissa.

For example: In log 3274 = 3.5150, the integral part is 3 i.e., characteristic is 3 and the decimal part is .5150 i.e., mantissa is .5150

To find the characteristic of common logarithm log10x:

(a) when the number is greater than 1  i.e., x > 1

In this case, the characteristic is one less than the number of digits in the left of the decimal point in the given number.

 

(b) when the number is less than 1 i.e., 0<x<1

In this case the characteristic is one more than the number of zeros between the decimal point and the first significant digit of the number and is negative.

Instead of -1, -2, etc. we write, 1¯, 2¯ etc.

Example :

Number Characteristic348.2529.219300.031252¯

Q:

if logab+logba=loga+b,then

A) a + b = 1 B) a - b = 1
C) a = b D) ab=1
 
Answer & Explanation Answer: A) a + b = 1

Explanation:

 

if logab+logba=loga+b,then

loga+b=logab×ba=log 1

 

so, a+b=1

Report Error

View Answer Report Error Discuss

Filed Under: Logarithms
Exam Prep: Bank Exams
Job Role: Bank PO

40 7537
Q:

if log105+log5x+1=log10(x+5)+1,then x is equal to

A) 1 B) 3
C) 5 D) 10
 
Answer & Explanation Answer: B) 3

Explanation:

log105+log5x+1=log10x+5+1

log1055x+1=log1010x+5

55x+1=10x+5

5x+1=2x+10

3x=9

x=3

 

 

Report Error

View Answer Report Error Discuss

Filed Under: Logarithms
Exam Prep: Bank Exams
Job Role: Bank PO

29 6816
Q:

The least value of the expression 2log10x - logx1100 for x>1 is:

A) 2 B) 3
C) 4 D) 5
 
Answer & Explanation Answer: C) 4

Explanation:

 

Hence the least value of is 4

Report Error

View Answer Report Error Discuss

Filed Under: Logarithms
Exam Prep: AIEEE , Bank Exams , CAT
Job Role: Bank Clerk , Bank PO

44 6762
Q:

For xN, x>1,  and  p=logxx+1q=logx+1x+2 then which one of the following is correct?

A) p < q B) p = q
C) p > q D) can't be determined
 
Answer & Explanation Answer: C) p > q

Explanation:

kl>k+1l+1 for (k,l) > 0 and  k > l 

 

 

 

Let     k = x+1    and   l = x

 

 

 

Therefore, x+1x>(x+1)+1(x)+1

 

 

 

 (x + 1) > x

 

 

 

Therefore, log(x+1)log(x)>log(x+2)log(x+1)

 

 

 

logxx+1 >logx+1x+2

Report Error

View Answer Report Error Discuss

Filed Under: Logarithms
Exam Prep: AIEEE , Bank Exams , CAT
Job Role: Bank Clerk , Bank PO

33 6420
Q:

Solve the equation 122x+1 = 1 ?

A) -1/2 B) 1/2
C) 1 D) -1
 
Answer & Explanation Answer: A) -1/2

Explanation:

Rewrite equation as 122x+1 = 120

 

Leads to 2x + 1 = 0 

 

Solve for x : x = -1/2

Report Error

View Answer Report Error Discuss

Filed Under: Logarithms
Exam Prep: GRE , GATE , CAT , Bank Exams , AIEEE
Job Role: Bank PO , Bank Clerk

37 6157
Q:

Which of the following statements is not correct?

A) log10 = 1 B) log (2 + 3) = log (2 x 3)
C) log1 = 0 D) log (1 + 2 + 3) = log 1 + log 2 + log 3
 
Answer & Explanation Answer: B) log (2 + 3) = log (2 x 3)

Explanation:

log (2 + 3) = log 5

 

log (2 x 3) = log 2 + log 3

 


 log (2 + 3) log (2 x 3)

Report Error

View Answer Report Error Discuss

Filed Under: Logarithms
Exam Prep: Bank Exams
Job Role: Bank PO

21 6073
Q:

The Value of  logtan10+logtan20++logtan890 is

A) -1 B) 0
C) 1/2 D) 1
 
Answer & Explanation Answer: B) 0

Explanation:

= log tan10+log tan890 + log tan20+ log tan880++log tan450  

 

= log [tan10 × tan890] + log [tan20 × tan880 ] ++log1  

 

 tan(90-θ)=cotθ and tan 450=1  

 

= log 1 + log 1 +.....+log 1 

 

= 0.

Report Error

View Answer Report Error Discuss

Filed Under: Logarithms
Exam Prep: AIEEE , Bank Exams , CAT , GATE
Job Role: Analyst , Bank Clerk , Bank PO

27 5831
Q:

If log8x = 313 then find the value of x?

A) 25 B) 32
C) 37 D) None of these
 
Answer & Explanation Answer: B) 32

Explanation:
Report Error

View Answer Report Error Discuss

Filed Under: Logarithms

36 5735