FACTS  AND  FORMULAE  FOR  AREA  QUESTIONS

 

 

FUNDAMENTAL CONCEPTS :

I. Results on Triangles:

1. Sum of the angles of  a triangle is 180o

2. The sum of any two sides of a triangle is greater than the third side.

3. Pythagoras Theorem : In a right - angled triangle,

Hypotenuse2=Base2+Height2

4. The line joining the mid-point of a side of a triangle to the opposite vertex is called the median.

5. The point where the three medians of a triangle meet, is called Centroid. The centroid divides each of the medians in the ratio 2 : 1.

6. In an Isosceles triangle, the altitude from the vertex bisects the base.

7. The median of a triangle divides it into two triangles of the same area.

8. The area of the triangle formed by joining the mid-points of the sides of a given triangle is one-fourth of the area of the given triangle.

 

II.Results on Quadrilaterals :


1. The diagonals of a parallelogram bisect each other

2. Each diagonal of a parallelogram divides it into two triangles of the same area.

3. The diagonals of a rectangle are equal and bisect each other.

4. The diagonals of a square are equal and bisect each other at right angles

5. The diagonals of a rhombus are unequal and bisect each other at right angles

6. A parallelogram and a rectangle on the same base and between the same parallels are equal in area.

7. Of all the parallelogram of given sides, the parallelogram which is a rectangle has the greatest area.

 

IMPORTANT FORMULAE

I. 

1. Area of a rectangle = (length x Breadth)

Length =AreaBreadth  and  Breadth=AreaLength

2. Perimeter of a rectangle = 2( length + Breadth)

 

 

II. Area of square = side2=12diagonal2 

 

III. Area of 4 walls of a room = 2(Length + Breadth) x Height

 

 

IV.

1. Area of a triangle =12×base×height

2. Area of a triangle = s(s-a)(s-b)(s-c), where a, b, c are the sides of the triangle and s=12a+b+c

3. Area of an equilateral triangle =34×side2

4. Radius of incircle of an equilateral triangle of side a=a23

5. Radius of circumcircle of an equilateral triangle of side a=a3

6. Radius of incircle of a triangle of area  and semi-perimeter s=s

 

 

V.

1. Area of a parallelogram = (Base x Height)

2. Area of a rhombus = 12×Product of diagonals

3. Area of a trapezium = 12×(sum of parallel sides)×distance between them

    

 

VI.

1. Area of a cicle = πR2, where R is the radius.

2. Circumference of a circle = 2πR.

3. Length of an arc = 2πRθ360, where θ is the central angle.

4. Area of a sector = 12arc×R=πR2θ360 

 

VII.

1. Area of a semi-circle = πR22

2. Circumference of a semi - circle = πR

Q:

If the ratio of area of rectangle to its perimeter is 60:11. And length and breadth are in the ratio 6 : 5. Find length of rectangle.

A) 40 units B) 30 units
C) 13 units D) 24 units
 
Answer & Explanation Answer: D) 24 units

Explanation:

Ratio of length and breadth is 6 : 5
∴ Length = 6x
Breadth = 5x
∴ Area = l x b = 30x2
∴ Perimeter = 2 (l + b) = 2(6x + 5x) =22x
∴ (30*x*x)/(22x)= 60/11
∴ X = 4
∴ Length = 6x = 6 x 4 = 24 units

Report Error

View Answer Report Error Discuss

Filed Under: Area
Exam Prep: Bank Exams

1 3939
Q:

What is the area of an obtuse angled triangle given below with two sides are 8 and 12 and the angle included between two sides is 150 deg?

A) 48 sq units B) 24 sq units
C) 12 sq units D) 6 sq units
 
Answer & Explanation Answer: B) 24 sq units

Explanation:

We know that, 

The area of a triangle with two sides given and included angle

A = 1/2 x product of sides x Sin(angle) 

 

Here the two sides are 8 & 12

Angle = 150

 

Area = 1/2 x 8 x 12 x sin150

Sin(150) = sin(90+60) = cos(60) = 1/2

 

A = 48 x 1/2 = 24

Area of the given triangle = 24 sq units.

 

Report Error

View Answer Report Error Discuss

Filed Under: Area
Exam Prep: AIEEE , Bank Exams , CAT , GATE
Job Role: Analyst , Bank Clerk , Bank PO

13 3778
Q:

The length and the breadth of rectangular field are in the ratio of 8 : 7. If charges of the painting the boundary of rectangle is at Rs. 10 per meter is Rs. 3000. What is the area of rectangular plot?

A) 5600 sq.m B) 1400 sq. m
C) 4400 sq.m D) 3600 sq.m
 
Answer & Explanation Answer: A) 5600 sq.m

Explanation:

Perimeter of the rectangle is given by 3000/10 = 300 mts

But we know,

The Perimeter of the rectangle = 2(l + b)

Now,

2(8x + 7x) = 300

30x = 300

x = 10

Required, Area of rectangle = 8x x 7x = 56 x 100 = 5600 sq. mts.

Report Error

View Answer Report Error Discuss

Filed Under: Area
Exam Prep: AIEEE , Bank Exams , CAT , GATE
Job Role: Analyst , Bank Clerk , Bank PO

19 3561
Q:

XYZ is right angled at Y. If mZ = 60°, then find the value of (cotX - 1/3).

A) (3√3-1)/3 B) (2√3-√6)/2√2
C) -5/3 D) (2-√3)/2√3
 
Answer & Explanation Answer: A) (3√3-1)/3

Explanation:
Report Error

View Answer Report Error Discuss

Filed Under: Area
Exam Prep: Bank Exams

0 3544
Q:

In a rectangle, length is three times its breadth. If the length and the breadth of the rectangle are increased by 30% and 100% respectively, then its perimeter increases by

A) 40/3% B) 20%
C) 25% D) 27%
 
Answer & Explanation Answer: C) 25%

Explanation:
Let the breadth of the rectangle = x
Length of the the rectangle will be = 3 times of breadth = 3x
So the initial perimeter = 2(length + breadth) = 2(x + 3x) = 8x
New breadth after increase = x + 10x/100 = 1.1x
New length after increase = 3x + 30*3x/100 = 3.9x
New perimeter = 2(1.1x + 3.9x) = 10x
Percentage change in perimeter = ( 10x-8x)*100/8x = 25%
Report Error

View Answer Report Error Discuss

Filed Under: Area
Exam Prep: Bank Exams

10 3387
Q:

Three medians AD, BE and CF of ΔABC intersect at G; Area of ΔABC is 36 sq cm. Then the area of ΔCGE is

A) 12 sq cm B) 6 sq cm
C) 9 sq cm D) 18 sq cm
 
Answer & Explanation Answer: B) 6 sq cm

Explanation:
Report Error

View Answer Report Error Discuss

Filed Under: Area
Exam Prep: Bank Exams

3 3237
Q:

The perimeter of a rectangle whose length is 6 m more than its breadth is 84 m. What will be the area of the rectangle?

A) 333 sq.mts B) 330 sq.mts
C) 362 sq.mts D) 432 sq.mts
 
Answer & Explanation Answer: D) 432 sq.mts

Explanation:

Let the breadth of the rectangle = b mts

Then Length of the rectangle = b + 6 mts

Given perimeter = 84 mts

2(L + B) = 84 mts

2(b+6 + b) = 84

2(2b + 6) = 84

4b + 12 = 84

4b = 84 - 12

4b = 72

b = 18 mts

=> Length = b + 6 = 18 + 6 = 24 mts

 

Now, required Area of the rectangle = L x B = 24 x 18 = 432 sq. mts

Report Error

View Answer Report Error Discuss

Filed Under: Area
Exam Prep: AIEEE , Bank Exams , CAT , GATE
Job Role: Analyst , Bank Clerk , Bank PO

20 3015
Q:

A slice from a circular pizza of diameter 14 inches is cut in asuch a way that each slice of pizza has a central angle of 45°. What is the area of each slice of Pizza(in square inches)?

A) 16.25 B) 19.25
C) 18.25 D) 17.25
 
Answer & Explanation Answer: B) 19.25

Explanation:

Report Error

View Answer Report Error Discuss

Filed Under: Area

2 2758