Permutations and Combinations Questions

FACTS  AND  FORMULAE  FOR  PERMUTATIONS  AND  COMBINATIONS  QUESTIONS

 

 

1.  Factorial Notation: Let n be a positive integer. Then, factorial n, denoted n! is defined as: n!=n(n - 1)(n - 2) ... 3.2.1.

Examples : We define 0! = 1.

4! = (4 x 3 x 2 x 1) = 24.

5! = (5 x 4 x 3 x 2 x 1) = 120.

 

2.  Permutations: The different arrangements of a given number of things by taking some or all at a time, are called permutations.

Ex1 : All permutations (or arrangements) made with the letters a, b, c by taking two at a time are (ab, ba, ac, ca, bc, cb).

Ex2 : All permutations made with the letters a, b, c taking all at a time are:( abc, acb, bac, bca, cab, cba)

Number of Permutations: Number of all permutations of n things, taken r at a time, is given by:

Prn=nn-1n-2....n-r+1=n!n-r!

 

Ex : (i) P26=6×5=30   (ii) P37=7×6×5=210

Cor. number of all permutations of n things, taken all at a time = n!.

Important Result: If there are n subjects of which p1 are alike of one kind; p2 are alike of another kind; p3 are alike of third kind and so on and pr are alike of rth kind,

such that p1+p2+...+pr=n

Then, number of permutations of these n objects is :

n!(p1!)×(p2! ).... (pr!)

 

3.  Combinations: Each of the different groups or selections which can be formed by taking some or all of a number of objects is called a combination.

Ex.1 : Suppose we want to select two out of three boys A, B, C. Then, possible selections are AB, BC and CA.

Note that AB and BA represent the same selection.

Ex.2 : All the combinations formed by a, b, c taking ab, bc, ca.

Ex.3 : The only combination that can be formed of three letters a, b, c taken all at a time is abc.

Ex.4 : Various groups of 2 out of four persons A, B, C, D are : AB, AC, AD, BC, BD, CD.

Ex.5 : Note that ab ba are two different permutations but they represent the same combination.

Number of Combinations: The number of all combinations of n things, taken r at a time is:

Crn=n!(r !)(n-r)!=nn-1n-2....to r factorsr!

 

Note : (i)Cnn=1 and C0n =1     (ii)Crn=C(n-r)n

 

Examples : (i) C411=11×10×9×84×3×2×1=330      (ii)C1316=C(16-13)16=C316=560

Q:

If two cards are taken one after another without replacing from a pack of 52 cards. What is the probability for the two cards be Ace ?

A) 51/1221 B) 42/221
C) 1/221 D) 52/1245
 
Answer & Explanation Answer: C) 1/221

Explanation:

Total Combination of getting a card from 52 cards = C152

Because there is no replacement, so number of cards after getting first card= 51

Now, Combination of getting an another card= C151


Total combination of getting 2 cards from 52 cards without replacement= (C152×C151


There are total 4 Ace in stack. Combination of getting 1 Ace is = C14

 

Because there is no replacement, So number of cards after getting first Ace = 3


Combination of getting an another Ace = C13

Total Combination of getting 2 Ace without replacement=C14×C13

Now,Probability of getting 2 cards which are Ace =C14×C13C152×C151 = 1/221.

Report Error

View Answer Report Error Discuss

Filed Under: Permutations and Combinations
Exam Prep: CAT , Bank Exams , AIEEE
Job Role: Bank PO , Bank Clerk , Analyst

5 4428
Q:

A committee of 4 people is to be formed from a group of 9 people.How many possible committees can be formed?

A) 120 B) 162
C) 126 D) 170
 
Answer & Explanation Answer: C) 126

Explanation:

This question is a combination since order is not important.

 

Answer = 7C3 = 126

Report Error

View Answer Report Error Discuss

1 4415
Q:

In how many ways a committee, consisting of 5 men and 6 women can be formed from 8 men and 10 women?

A) 11670 B) 12000
C) 11760 D) 20050
 
Answer & Explanation Answer: C) 11760

Explanation:

Required number of ways= 8C5×10C6 = (8C3×10C4)= 11760.

Report Error

View Answer Report Error Discuss

1 4351
Q:

Find the number of ways to arrange 4 people in groups of 3 at a time where order matters?

A) 20 B) 16
C) 24 D) 36
 
Answer & Explanation Answer: C) 24

Explanation:

P(4,3)= P34= 24

Report Error

View Answer Report Error Discuss

0 4322
Q:

The number of sequences in which 4 players can sing a song, so that the youngest player may not be the last is ?

A) 2580 B) 3687
C) 4320 D) 5460
 
Answer & Explanation Answer: C) 4320

Explanation:

Let 'Y' be the youngest player.

The last song can be sung by any of the remaining 3 players. The first 3 players can sing the song in (3!) ways.

The required number of ways = 3(3!) = 4320.

Report Error

View Answer Report Error Discuss

Filed Under: Permutations and Combinations
Exam Prep: AIEEE , Bank Exams , CAT , GATE
Job Role: Bank Clerk , Bank PO

5 4288
Q:

How many more words can be formed by using the letters of the given word 'CREATIVITY'?

A) 851250 B) 751210
C) 362880 D) 907200
 
Answer & Explanation Answer: D) 907200

Explanation:

The number of letters in the given word CREATIVITY = 10

 

Here T & I letters are repeated

 

=> Number of Words that can be formed from CREATIVITY = 10!/2!x2! = 3628800/4 = 907200

Report Error

View Answer Report Error Discuss

Filed Under: Permutations and Combinations
Exam Prep: GATE , CAT , Bank Exams , AIEEE
Job Role: Bank PO , Bank Clerk

8 4280
Q:

Find the number of ways to take 4 people and place them in groups of 3 at a time where order does not matter?

A) 4 B) 12
C) 36 D) 16
 
Answer & Explanation Answer: A) 4

Explanation:

Since order does not matter, use the combination formula 

C34 = 24/6 = 4

Report Error

View Answer Report Error Discuss

1 4263
Q:

To fill 8 vacancies there are 15 candidates of which 5 are from ST. If 3 of the vacancies are reserved for ST candidates while the rest are open to all, Find the number of ways in which the selection can be done ?

A) 7920 B) 74841
C) 14874 D) 10213
 
Answer & Explanation Answer: A) 7920

Explanation:

ST candidates vacancies can be filled by C35 ways = 10 

Remaining vacancies are 5 that are to be filled by 12 

=> C512= (12x11x10x9x8)/(5x4x3x2x1) = 792 

Total number of filling the vacancies = 10 x 792 = 7920

Report Error

View Answer Report Error Discuss

Filed Under: Permutations and Combinations
Exam Prep: GATE , CAT , Bank Exams , AIEEE
Job Role: Bank PO , Bank Clerk

10 4236