14
Q:
A) 1:3 | B) 2:1 |
C) 3:2 | D) 2:3 |
Answer: C) 3:2
Explanation:
Explanation:
Let us assume S as number of shirts and T as number of trousers
Given that each trouser cost = Rs.70 and that of shirt = Rs.30
Therefore, 70 T + 30 S = 810
=> 7T + 3S = 81......(1)
T = ( 81 - 3S )/7
We need to find the least value of S which will make (81 - 3S) divisible by 7 to get maximum value of T
Simplifying by taking 3 as common factor i.e, 3(27-S) / 7
In the above equation least value of S as 6 so that 27- 3S becomes divisible by 7
Hence T = (81-3xS)/7 = (81-3x6)/7 = 63/7 = 9
Hence for S, put T in eq(1), we get
S = 81-7(9)/3 = 81-63 / 3 = 18/3 = 6.
The ratio of T:S = 9:6 = 3:2.