Processing math: 100%

FACTS  AND  FORMULAE  FOR  LOGARITHMS  QUESTIONS

 

 

EXPONENTIAL FUNCTION

 For every 

xR, ex=1+x+x22!+x33!+...+xnn!+... 

or  ex=n=0xnn!

Here ex is called as exponential function and it is a finite number for every xR.

 

 

LOGARITHM

Let a,b be positive real numbers then ax=b can be written as 

     loga(b)=x;  a1, a>0, b>0

e.g, 25=32 log2(32)=5

 

(i) Natural Logarithm :  

loge(N) is called Natural logarithm or Naperian Logarithm, denoted by ln N i.e, when the base is 'e' then it is called as Natural logarithm.

e.g , loge(5), loge(181) ... etc

 

(ii) Common Logarithm :  is called common logarithm or Brigg's Logarithm i.e., when base of log is 10, then it is called as common logarithm.

e.g log10(100), log10(248), etc

 

PROPERTIES OF LOGARITHM

1. loga(xy)=loga(x)+loga(y)

 

 2. loga(xy)=loga(x)-loga(y)

 

3. logx(x)=1

 

4. loga(1)=0

 

5. loga(xp)=ploga(x)

 

6. loga(x)=1logx(a)

 

7. loga(x)=logb(x)logb(a)=log(x)log(a)

 

CHARACTERISTICS AND MANTISSA


Characteristic : The integral part of logarithm is known as characteristic.

Mantissa : The decimal part is known as mantissa and is always positive.

E.g, In loga(x), the integral part of x is called the characteristic and the decimal part of x is called the mantissa.

For example: In log 3274 = 3.5150, the integral part is 3 i.e., characteristic is 3 and the decimal part is .5150 i.e., mantissa is .5150

To find the characteristic of common logarithm log10(x):

(a) when the number is greater than 1  i.e., x > 1

In this case, the characteristic is one less than the number of digits in the left of the decimal point in the given number.

 

(b) when the number is less than 1 i.e., 0<x<1

In this case the characteristic is one more than the number of zeros between the decimal point and the first significant digit of the number and is negative.

Instead of -1, -2, etc. we write, ˉ1, ˉ2 etc.

Example :

Number Characteristic348.2529.219300.03125ˉ2

Q:

If log 2 = 0.3010 and log 3 = 0.4771, the values of log5 512 is

A) 2.875 B) 3.875
C) 4.875 D) 5.875
 
Answer & Explanation Answer: B) 3.875

Explanation:

ANS:      log5512 = log512/log5  =  log29log(10/2)  =9log2log10-log2 =9*0.30101-0.3010 =2.709/0.699 =2709/699 =3.876

Report Error

View Answer Report Error Discuss

Filed Under: Logarithms
Exam Prep: Bank Exams
Job Role: Bank PO

207 72192
Q:

If log 27 = 1.431, then the value of log 9 is

A) 0.754 B) 0.854
C) 0.954 D) 0.654
 
Answer & Explanation Answer: C) 0.954

Explanation:

log 27 = 1.431
log(33) = 1.431
3 log 3 = 1.431
log 3 = 0.477
log 9 = log(32)= 2 log 3 = (2 x 0.477) = 0.954

Report Error

View Answer Report Error Discuss

Filed Under: Logarithms
Exam Prep: Bank Exams
Job Role: Bank PO

129 63365
Q:

 If log 2 = 0.30103, Find the number of digits in 256 is

A) 17 B) 19
C) 23 D) 25
 
Answer & Explanation Answer: A) 17

Explanation:

log(256) =56*0.30103 =16.85768.

 

Its characteristics is 16.

 

Hence, the number of digits in 256 is 17.

Report Error

View Answer Report Error Discuss

Filed Under: Logarithms
Exam Prep: Bank Exams
Job Role: Bank PO

119 58322
Q:

If log 64 = 1.8061, then the value of log 16 will be (approx)?

A) 1.9048 B) 1.2040
C) 0.9840 D) 1.4521
 
Answer & Explanation Answer: B) 1.2040

Explanation:

Given that, log 64 = 1.8061

 i.e log(43)=1.8061 

--> 3 log 4 = 1.8061

--> log 4 = 0.6020

--> 2 log 4 = 1.2040

log(42)=1.2040

Therefore, log 16 = 1.2040

Report Error

View Answer Report Error Discuss

Filed Under: Logarithms
Exam Prep: CAT
Job Role: Bank Clerk

50 17466
Q:

If log7(2) = m, then log49(28) is equal to ?

A) 1/(1+2m) B) (1+2m)/2
C) 2m/(2m+1) D) (2m+1)/2m
 
Answer & Explanation Answer: B) (1+2m)/2

Explanation:

log49(28) = 12log7(7×4)

 

= 12+12(2log7(2))
= 12+log7(2)
12 + m
1+2m2.

Report Error

View Answer Report Error Discuss

Filed Under: Logarithms
Exam Prep: GRE , GATE , CAT , Bank Exams , AIEEE
Job Role: Bank PO , Bank Clerk , Analyst

62 12560
Q:

Find the logarithm of 144 to the base 23 :

A) 2 B) 4
C) 8 D) None of these
 
Answer & Explanation Answer: B) 4

Explanation:

log23(144) = 4 

Report Error

View Answer Report Error Discuss

Filed Under: Logarithms
Exam Prep: AIEEE , Bank Exams , CAT
Job Role: Analyst , Bank Clerk , Bank PO

55 11412
Q:

If a2+b2 = c2 , then 1logc+a(b) + 1logc-a(b) = ?

A) 1 B) 2
C) 4 D) 8
 
Answer & Explanation Answer: B) 2

Explanation:

Given a2 + b2 = c2

 

Now  1logc+a(b)  + 1logc-a(b) 

 

logb(c+a) + logb(c-a)

 

logb(c2-a2)

2logb(b) = 2

Report Error

View Answer Report Error Discuss

Filed Under: Logarithms
Exam Prep: GRE , GATE , CAT , Bank Exams , AIEEE
Job Role: Bank PO , Bank Clerk , Analyst

30 11159
Q:

What is the number of digits in 333? Given that log3 = 0.47712?

A) 12 B) 13
C) 14 D) 15
 
Answer & Explanation Answer: B) 13

Explanation:

 Let   Let x=(333) (33)3

 

 Then, log(x) = 33 log(3)  

 

= 27 x 0.47712 = 12.88224 

 

Since the characteristic in the resultant value of log x is 12

 

The number of digits in x is (12 + 1) = 13 

 

Hence the required number of digits in 333is 13.

Report Error

View Answer Report Error Discuss

Filed Under: Logarithms
Exam Prep: AIEEE , Bank Exams , CAT
Job Role: Bank Clerk , Bank PO

49 11104